Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Formos Med Assoc ; 122(5): 384-392, 2023 May.
Article in English | MEDLINE | ID: covidwho-2293311

ABSTRACT

BACKGROUND: Studies correlating reactogenicity and immunogenicity of COVID-19 vaccines are limited to BNT162b2, with inconsistent results. We investigated whether adverse reactions after other COVID-19 vaccines reliably predict humoral responses. METHODS: Adult volunteers were recruited for homologous or heterologous prime-boost vaccinations with adenoviral (ChAdOx1, AstraZeneca) and/or mRNA (mRNA-1273, Moderna) vaccines administered either 4 or 8 weeks apart. Adverse effects were routinely solicited and recorded by subjects in a standard diary card for up to 84 days post booster vaccination. Anti-SARS-CoV-2 IgG titers were measured pre- (visit 1), and post-booster dose at days 14 (visit 2) and 28 (visit 3). RESULTS: A total of 399 participants (75% women) with a median age of 41 (interquartile range, 33-48 IQR) years were included. Vaccine-induced antibody titers at days 14 and 28 were significantly higher among subjects who reported local erythema, swelling, pain, as well as systemic fever, chills, headache, myalgia, arthralgia, fatigue compared to those who did not experience local or systemic reactogenicity. Post-vaccination humoral responses did not correlate with the occurrence of skin rash and correlated weakly with gastrointestinal symptoms. A significant correlation between post-vaccination peak body temperature and anti-SARS-CoV-2 spike IgG at Day 14, independent of vaccine type and schedule, was found. CONCLUSION: Specific symptoms of reactogenicity such as post-vaccination injection site pain, swelling, erythema and fever, myalgia and fatigue are significantly predictive of the magnitude of the anti-SARS-CoV-2 antibody response.


Subject(s)
COVID-19 , Drug-Related Side Effects and Adverse Reactions , Adult , Female , Humans , Middle Aged , Male , COVID-19 Vaccines/adverse effects , Antibody Formation , Myalgia/etiology , BNT162 Vaccine , COVID-19/prevention & control , Vaccination/adverse effects , Fatigue , Fever/etiology , Antibodies, Viral
2.
J Formos Med Assoc ; 2022 Aug 14.
Article in English | MEDLINE | ID: covidwho-2235539

ABSTRACT

We reported 25 recipients (14 females and 11 males) aged from 18 to 65 years who unexpectedly received a primary dose of undiluted BNT162b2 vaccine (180 µg). The most common adverse reactions included injection site pain (n = 22), followed by fever (9), fatigue (8), chest tightness (6), and dizziness (6). The most common laboratory abnormalities were anemia (n = 4) and elevated liver transaminase level (4), followed by abnormal leukocyte counts (3) and elevated D-dimer level (3). The adverse reactions and laboratory abnormalities of these recipients were mild and spontaneously recovered within a few weeks. Significant elevations of anti-SARS-CoV-2 spike IgG titers after a booster dose of the BNT162b2 were found. Similar to reports of BNT162b2 clinical trials, the adverse reactions and laboratory abnormalities of these recipients were mild, and they spontaneously recovered within a few weeks. These results provide clinical and immunological effects of undiluted BNT162b2 vaccine inoculation.

3.
J Formos Med Assoc ; 2022 Sep 08.
Article in English | MEDLINE | ID: covidwho-2235538

ABSTRACT

BACKGROUND/PURPOSE: The efficacy and safety of coronavirus disease 2019 (COVID-19) booster vaccines remain limited. We investigated the immunogenicity and adverse events of the third dose of mRNA vaccines in healthy adults. METHODS: Volunteers vaccinated with two doses of the adenoviral vaccine (ChAdOx1) 12 weeks before were administered with an mRNA COVID-19 vaccine. These were divided into three groups, full-dose mRNA-1273 (group 1); half-dose mRNA-1273 (group 2); and full-dose BNT-162b2 (group 3). Primary outcomes included serum anti-SARS-CoV-2 spike immunoglobulin G (IgG) titers and neutralizing antibody titers against B.1.1.7 (alpha), B.1.617.2 (delta), and B.1.1.529 (omicron) variants. Secondary outcomes included the evaluation of humoral and cellular immunity and vaccine-associated adverse events after the boost. RESULTS: Totally 300 participants were recruited, and 298 participants were enrolled. For all three groups, an increase in anti-SARS-CoV-2 spike IgG geometric mean titers (30.12- to 71.80-fold) and neutralizing antibody titers against the alpha variant (69.80- to 173.23-folds), delta variant (132.69- to 324.63-folds), and omicron variant (135.36- to 222.37-folds) were observed on day 28. All groups showed robust T- and B-cell responses after boosting. Adverse events were overall mild and transient but with higher prevalence and severity in group 1 participants than in other groups. CONCLUSIONS: Third dose mRNA COVID-19 vaccines markedly enhanced cellular and humoral responses and were safe. Immunological responses and adverse events were higher in individuals receiving the full-dose mRNA-1273 vaccine, followed by a half-dose mRNA-1273 vaccine and BNT-162b2 vaccine.

4.
J Formos Med Assoc ; 2022 Aug 18.
Article in English | MEDLINE | ID: covidwho-2235537

ABSTRACT

The appropriate interval between heterologous prime adenoviral vectored vaccination and boost mRNA vaccination remains unclear. We recruited 100 adult participants to receive a prime adenoviral vectored vaccine (ChAdOx1, AstraZeneca) and a boost mRNA vaccine (mRNA-1273, Moderna) 12 weeks apart and checked their serum SARS-CoV-2 anti-spike IgG titers and neutralizing antibody titers against B.1.1.7 (alpha) and B.1.617.2 (delta) variants on the 28th day after the boost dose. Results were compared with our previous study cohorts who received the same prime-boost vaccinations at 4- and 8-week intervals. Compared to other heterologous vaccination groups, the 12-week interval group had higher neutralizing antibody titers against SARS-CoV-2 variants than the 4-week interval group and was similar to the 8-week interval group at day 28. Adverse reactions after the boost dose were mild and transient. Our results support deploying viral vectored and mRNA vaccines in a flexible schedule with intervals from 8 to 12 weeks.

5.
J Formos Med Assoc ; 121(12): 2438-2445, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2210778

ABSTRACT

BACKGROUND: Whether immunocompromising conditions affect the immunogenicity of COVID-19 booster vaccination remains a concern, which impedes the vaccination campaign in people most vulnerable to COVID-19-associated morbidity and mortality. We aimed to evaluate the effect of immune dysfunction on immunogenicity of homologous and heterologous prime-boost COVID-19 vaccination. METHODS: Between July and August, 2021, 399 participants were randomized to receive ChAdOx1/ChAdOx1 8 weeks apart, ChAdOx1/mRNA-1273 8 weeks apart, ChAdOx1/mRNA-1273 4 weeks apart, and mRNA-1273/mRNA-1273 4 weeks apart. The anti-SARS-CoV-2 spike IgG antibody titers on the day before booster vaccination and 4 weeks after booster vaccination were compared between participants with and without immunocompromising conditions. RESULTS: Among ChAdOx1-primed participants, a trend of lower anti-SARS-CoV-2 spike IgG titers before booster vaccination were found in participants with autoimmune diseases (geometric means, 34.76 vs. 84.25 binding antibody units [BAU]/mL, P = 0.173), compared to those without. Participants receiving immunosuppressants and/or immunomodulators had significant lower anti-SARS-CoV-2 spike IgG titers before booster vaccination than those without (geometric means, 36.39 vs. 83.84 BAU/mL; P = 0.001). Among mRNA-1273-boosted participants, anti-SARS-CoV-2 spike IgG titers 4 weeks after booster vaccination were similar across all the strata. Participants with autoimmune diseases and receiving immunosuppressants and/or immunomodulators, had numerically lower anti-SARS-CoV-2 spike IgG titers 4 weeks after booster vaccination compared to those without (geometric means, 1474.34 vs. 1923.23 and 1590.61 vs. 1918.38 BAU/mL; P > 0.05). CONCLUSION: The immunogenicity of prime vaccination with ChAdOx1 decreased by immune dysfunction, but enhanced after receiving boost vaccination with mRNA-1273. Our study results support the efficacy of mRNA-1273 booster dose among immunocompromised hosts.


Subject(s)
Autoimmune Diseases , COVID-19 , Humans , Immunization, Secondary/methods , 2019-nCoV Vaccine mRNA-1273 , COVID-19/prevention & control , Taiwan , Antibodies, Viral , Immunocompromised Host , Vaccination , Immunoglobulin G , Adjuvants, Immunologic , Immunosuppressive Agents
6.
J Formos Med Assoc ; 122(8): 714-722, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2131481

ABSTRACT

BACKGROUND: Patients recovering from COVID-19 may need vaccination against SARS-CoV-2 because acquired immunity from primary infection may wane, given the emergence of new SARS-CoV-2 variants. Understanding the trends of anti-spike IgG and neutralizing antibody titers in patients recovering from COVID-19 may inform the decision made on the appropriate interval between recovery and vaccination. METHODS: Participants aged 20 years or older and diagnosed with COVID-19 between January and December, 2020 were enrolled. Serum specimens were collected every three months from 10 days to 12 months after the onset of symptom for determinations of anti-spike IgG and neutralizing antibody titers against SARS-CoV-2 Wuhan strain with D614G mutation, alpha, gamma and delta variants. RESULTS: Of 19 participants, we found a decreasing trend of geometric mean titers of anti-spike IgG from 560.9 to 217 and 92 BAU/mL after a 4-month and a 7-month follow-up, respectively. The anti-spike IgG titers declined more quickly in the ten participants with severe or critical disease than the nine participants with only mild to moderate disease between one month and seven months after SARS-CoV-2 infection (-8.49 vs - 2.34-fold, p < 0.001). The neutralizing activity of the convalescent serum specimens collected from participants recovering from wild-type SARS-CoV-2 infection against different variants was lower, especially against the delta variants (p < 0.01 for each variant with Wuhan strain as reference). CONCLUSION: Acquired immunity from primary infection with SARS-CoV-2 waned within 4-7 months in COVID-19 patients, and neutralizing cross-activities against different SARS-CoV-2 variants were lower compared with those against wild-type strain.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Antibodies, Neutralizing , COVID-19 Serotherapy , Immunoglobulin G , Antibodies, Viral
7.
J Formos Med Assoc ; 121(4): 766-777, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1882193

ABSTRACT

BACKGROUND/PURPOSE: Efficacy and safety data of heterologous prime-boost vaccination against SARS-CoV-2 remains limited. METHODS: We recruited adult volunteers for homologous or heterologous prime-boost vaccinations with adenoviral (ChAdOx1, AstraZeneca) and/or mRNA (mRNA-1273, Moderna) vaccines. Four groups of prime-boost vaccination schedules were designed: Group 1, ChAdOx1/ChAdOx1 8 weeks apart; Group 2, ChAdOx1/mRNA-1273 8 weeks apart; Group 3, ChAdOx1/mRNA-1273 4 weeks apart; and Group 4, mRNA-1273/mRNA-1273 4 weeks apart. The primary outcome was serum anti-SARS-CoV-2 IgG titers and neutralizing antibody titers against B.1.1.7 (alpha) and B.1.617.2 (delta) variants on day 28 after the second dose. Adverse events were recorded up until 84 days after the second dose. RESULTS: We enrolled 399 participants with a median age of 41 years and 75% were female. On day 28 after the second dose, the anti-SARS-CoV-2 IgG titers of both heterologous vaccinations (Group 2 and Group 3) were significantly higher than that of homologous ChAdOx1 vaccination (Group 1), and comparable with homologous mRNA-1273 vaccination (Group 4). The heterologous vaccination group had better neutralizing antibody responses against the alpha and delta variant as compared to the homologous ChAdOx1 group. Most of the adverse events (AEs) were mild and transient. AEs were less frequent when heterologous boosting was done at 8 weeks rather than at 4 weeks. CONCLUSION: Heterologous ChAdOx1/mRNA-1273 vaccination provided higher immunogenicity than homologous ChAdOx1 vaccination and comparable immunogenicity with the homologous mRNA-1273 vaccination. Our results support the safety and efficacy of heterologous prime-boost vaccination using the ChAdOx1 and mRNA-1273 COVID-19 vaccines. (ClinicalTrials.gov number, NCT05074368).


Subject(s)
COVID-19 , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , Adult , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Female , Humans , Immunity , Vaccination
8.
EMBO Mol Med ; 14(4): e15298, 2022 04 07.
Article in English | MEDLINE | ID: covidwho-1675333

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants has altered the trajectory of the COVID-19 pandemic and raised some uncertainty on the long-term efficiency of vaccine strategy. The development of new therapeutics against a wide range of SARS-CoV-2 variants is imperative. We, here, have designed an inhalable siRNA, C6G25S, which covers 99.8% of current SARS-CoV-2 variants and is capable of inhibiting dominant strains, including Alpha, Delta, Gamma, and Epsilon, at picomolar ranges of IC50 in vitro. Moreover, C6G25S could completely inhibit the production of infectious virions in lungs by prophylactic treatment, and decrease 96.2% of virions by cotreatment in K18-hACE2-transgenic mice, accompanied by a significant prevention of virus-associated extensive pulmonary alveolar damage, vascular thrombi, and immune cell infiltrations. Our data suggest that C6G25S provides an alternative and effective approach to combating the COVID-19 pandemic.


Subject(s)
COVID-19 , Animals , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Pandemics , RNA, Small Interfering/genetics , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL